什么是关系型数据库?
顾名思义,关系型数据库(RDB,Relational Database)就是一种建立在关系模型的基础上的数据库。关系模型表明了数据库中所存储的数据之间的联系(一对一、一对多、多对多)。
有哪些常见的关系型数据库呢?
MySQL、PostgreSQL、Oracle、SQL Server、SQLite(微信本地的聊天记录的存储就是用的 SQLite)
MySQL 有什么优点?
整数类型的 UNSIGNED 属性有什么用?
MySQL 中的整数类型可以使用可选的 UNSIGNED 属性来表示不允许负值的无符号整数。使用 UNSIGNED 属性可以将正整数的上限提高一倍,因为它不需要存储负数值。
例如, TINYINT UNSIGNED 类型的取值范围是 0 ~ 255,而普通的 TINYINT 类型的值范围是 -128 ~ 127。INT UNSIGNED 类型的取值范围是 0 ~ 4,294,967,295,而普通的 INT 类型的值范围是 -2,147,483,648 ~ 2,147,483,647。
对于从 0 开始递增的 ID 列,使用 UNSIGNED 属性可以非常适合,因为不允许负值并且可以拥有更大的上限范围,提供了更多的 ID 值可用。
CHAR 和 VARCHAR 的区别是什么?
CHAR 和 VARCHAR 是最常用到的字符串类型,两者的主要区别在于:CHAR 是定长字符串,VARCHAR 是变长字符串。
CHAR 在存储时会在右边填充空格以达到指定的长度,检索时会去掉空格;VARCHAR 在存储时需要使用 1 或 2 个额外字节记录字符串的长度,检索时不需要处理。
CHAR 更适合存储长度较短或者长度都差不多的字符串,例如 Bcrypt 算法、MD5 算法加密后的密码、身份证号码。VARCHAR 类型适合存储长度不确定或者差异较大的字符串,例如用户昵称、文章标题等。
CHAR(M) 和 VARCHAR(M) 的 M 都代表能够保存的字符数的最大值,无论是字母、数字还是中文,每个都只占用一个字符
VARCHAR(100)和 VARCHAR(10)的区别是什么?
VARCHAR(100)和 VARCHAR(10)都是变长类型,表示能存储最多 100 个字符和 10 个字符。因此,VARCHAR (100) 可以满足更大范围的字符存储需求,有更好的业务拓展性。而 VARCHAR(10)存储超过 10 个字符时,就需要修改表结构才可以。
虽说 VARCHAR(100)和 VARCHAR(10)能存储的字符范围不同,但二者存储相同的字符串,所占用磁盘的存储空间其实是一样的,这也是很多人容易误解的一点。
不过,VARCHAR(100) 会消耗更多的内存。这是因为 VARCHAR 类型在内存中操作时,通常会分配固定大小的内存块来保存值,即使用字符类型中定义的长度。例如在进行排序的时候,VARCHAR(100)是按照 100 这个长度来进行的,也就会消耗更多内存。
DECIMAL 和 FLOAT/DOUBLE 的区别是什么?
DECIMAL 和 FLOAT 的区别是:DECIMAL 是定点数,FLOAT/DOUBLE 是浮点数。DECIMAL 可以存储精确的小数值,FLOAT/DOUBLE 只能存储近似的小数值。
DECIMAL 用于存储具有精度要求的小数,例如与货币相关的数据,可以避免浮点数带来的精度损失。
为什么不推荐使用 TEXT 和 BLOB?
TEXT 类型类似于 CHAR(0-255 字节)和 VARCHAR(0-65,535 字节),但可以存储更长的字符串,即长文本数据,例如博客内容。
在日常开发中,很少使用 TEXT 类型,但偶尔会用到,而 BLOB 类型则基本不常用。如果预期长度范围可以通过 VARCHAR 来满足,建议避免使用 TEXT。
DATETIME 和 TIMESTAMP 的区别是什么?
DATETIME 类型没有时区信息,TIMESTAMP 和时区有关。
TIMESTAMP 只需要使用 4 个字节的存储空间,但是 DATETIME 需要耗费 8 个字节的存储空间。但是,这样同样造成了一个问题,Timestamp 表示的时间范围更小。
MySQL 基础架构
连接器: 身份认证和权限相关(登录 MySQL 的时候)。
查询缓存: 执行查询语句的时候,会先查询缓存(MySQL 8.0 版本后移除,因为这个功能不太实用)。
分析器: 没有命中缓存的话,SQL 语句就会经过分析器,分析器说白了就是要先看你的 SQL 语句要干嘛,再检查你的 SQL 语句语法是否正确。
优化器: 按照 MySQL 认为最优的方案去执行。
执行器: 执行语句,然后从存储引擎返回数据。 执行语句之前会先判断是否有权限,如果没有权限的话,就会报错。
插件式存储引擎:主要负责数据的存储和读取,采用的是插件式架构,支持 InnoDB、MyISAM、Memory 等多种存储引擎。InnoDB 是 MySQL 的默认存储引擎,绝大部分场景使用 InnoDB 就是最好的选择
MySQL 存储引擎
MySQL 支持哪些存储引擎?默认使用哪个?
MySQL 支持多种存储引擎,你可以通过 SHOW ENGINES 命令来查看 MySQL 支持的所有存储引擎。
从上图我们可以查看出, MySQL 当前默认的存储引擎是 InnoDB。并且,所有的存储引擎中只有 InnoDB 是事务性存储引擎,也就是说只有 InnoDB 支持事务。
MySQL 5.5.5 之前,MyISAM 是 MySQL 的默认存储引擎。5.5.5 版本之后,InnoDB 是 MySQL 的默认存储引擎。
你可以通过 SELECT VERSION() 命令查看你的 MySQL 版本。
mysql> SELECT VERSION();
+-----------+
| VERSION() |
+-----------+
| 8.0.27 |
+-----------+
1 row in set (0.00 sec)
你也可以通过 SHOW VARIABLES LIKE '%storage_engine%' 命令直接查看 MySQL 当前默认的存储引擎。
mysql> SHOW VARIABLES LIKE '%storage_engine%';
+---------------------------------+-----------+
| Variable_name | Value |
+---------------------------------+-----------+
| default_storage_engine | InnoDB |
| default_tmp_storage_engine | InnoDB |
| disabled_storage_engines | |
| internal_tmp_mem_storage_engine | TempTable |
+---------------------------------+-----------+
4 rows in set (0.00 sec)
MySQL 存储引擎架构了解吗?
MySQL 存储引擎采用的是 插件式架构 ,支持多种存储引擎,我们甚至可以为不同的数据库表设置不同的存储引擎以适应不同场景的需要。存储引擎是基于表的,而不是数据库。
你还可以根据 MySQL 定义的存储引擎实现标准接口来编写一个属于自己的存储引擎。这些非官方提供的存储引擎可以称为第三方存储引擎,区别于官方存储引擎。像目前最常用的 InnoDB 其实刚开始就是一个第三方存储引擎,后面由于过于优秀,其被 Oracle 直接收购了。
MyISAM 和 InnoDB 有什么区别?
1、是否支持行级锁:
MyISAM 只有表级锁(table-level locking),而 InnoDB 支持行级锁(row-level locking)和表级锁,默认为行级锁。
也就说,MyISAM 一锁就是锁住了整张表,这在并发写的情况下是多么滴憨憨啊!这也是为什么 InnoDB 在并发写的时候,性能更牛皮了!
2、是否支持事务:
MyISAM 不提供事务支持。InnoDB 提供事务支持,实现了 SQL 标准定义了四个隔离级别,具有提交(commit)和回滚(rollback)事务的能力。并且,InnoDB 默认使用的 REPEATABLE-READ(可重读)隔离级别是可以解决幻读问题发生的(基于 MVCC 和 Next-Key Lock)。
3、是否支持外键:
MyISAM 不支持,而 InnoDB 支持。
外键对于维护数据一致性非常有帮助,但是对性能有一定的损耗。因此,通常情况下,我们是不建议在实际生产项目中使用外键的,在业务代码中进行约束即可!
4、是否支持数据库异常崩溃后的安全恢复:
MyISAM 不支持,而 InnoDB 支持。
使用 InnoDB 的数据库在异常崩溃后,数据库重新启动的时候会保证数据库恢复到崩溃前的状态。这个恢复的过程依赖于 redo log 。
5、是否支持 MVCC:
MyISAM 不支持,而 InnoDB 支持。
讲真,这个对比有点废话,毕竟 MyISAM 连行级锁都不支持。MVCC 可以看作是行级锁的一个升级,可以有效减少加锁操作,提高性能。
6、索引实现不一样。
虽然 MyISAM 引擎和 InnoDB 引擎都是使用 B+Tree 作为索引结构,但是两者的实现方式不太一样。InnoDB 引擎中,其数据文件本身就是索引文件。相比 MyISAM,索引文件和数据文件是分离的,其表数据文件本身就是按 B+Tree 组织的一个索引结构,树的叶节点 data 域保存了完整的数据记录。
7、性能有差别:
InnoDB 的性能比 MyISAM 更强大,不管是在读写混合模式下还是只读模式下,随着 CPU 核数的增加,InnoDB 的读写能力呈线性增长。MyISAM 因为读写不能并发,它的处理能力跟核数没关系。
8、数据缓存策略和机制实现不同。
InnoDB 使用缓冲池(Buffer Pool)缓存数据页和索引页,MyISAM 使用键缓存(Key Cache)仅缓存索引页而不缓存数据页。
总结:
InnoDB 支持行级别的锁粒度,MyISAM 不支持,只支持表级别的锁粒度。
MyISAM 不提供事务支持。InnoDB 提供事务支持,实现了 SQL 标准定义了四个隔离级别。
MyISAM 不支持外键,而 InnoDB 支持。
MyISAM 不支持 MVCC,而 InnoDB 支持。
虽然 MyISAM 引擎和 InnoDB 引擎都是使用 B+Tree 作为索引结构,但是两者的实现方式不太一样。
MyISAM 不支持数据库异常崩溃后的安全恢复,而 InnoDB 支持。
InnoDB 的性能比 MyISAM 更强大。
MyISAM 和 InnoDB 如何选择?
大多数时候我们使用的都是 InnoDB 存储引擎,在某些读密集的情况下,使用 MyISAM 也是合适的。不过,前提是你的项目不介意 MyISAM 不支持事务、崩溃恢复等缺点(可是~我们一般都会介意啊)。
MySQL 查询缓存
MySQL 查询缓存是查询结果缓存。执行查询语句的时候,会先查询缓存,如果缓存中有对应的查询结果,就会直接返回。
my.cnf 加入以下配置,重启 MySQL 开启查询缓存
query_cache_type=1
query_cache_size=600000
MySQL 执行以下命令也可以开启查询缓存
set global query_cache_type=1;
set global query_cache_size=600000;
查询缓存会在同样的查询条件和数据情况下,直接返回缓存中的结果。但需要注意的是,查询缓存的匹配条件非常严格,任何细微的差异都会导致缓存无法命中。这里的查询条件包括查询语句本身、当前使用的数据库、以及其他可能影响结果的因素,如客户端协议版本号等。
查询缓存不命中的情况:
1、任何两个查询在任何字符上的不同都会导致缓存不命中。
2、如果查询中包含任何用户自定义函数、存储函数、用户变量、临时表、MySQL 库中的系统表,其查询结果也不会被缓存。
3、缓存建立之后,MySQL 的查询缓存系统会跟踪查询中涉及的每张表,如果这些表(数据或结构)发生变化,那么和这张表相关的所有缓存数据都将失效。
缓存虽然能够提升数据库的查询性能,但是缓存同时也带来了额外的开销,每次查询后都要做一次缓存操作,失效后还要销毁。 因此,开启查询缓存要谨慎,尤其对于写密集的应用来说更是如此。如果开启,要注意合理控制缓存空间大小,一般来说其大小设置为几十 MB 比较合适。此外,还可以通过 sql_cache 和 sql_no_cache 来控制某个查询语句是否需要缓存:
SELECT sql_no_cache COUNT(*) FROM usr;
MySQL 事务
何谓事务?
事务是逻辑上的一组操作,要么都执行,要么都不执行。
原子性(Atomicity):事务是最小的执行单位,不允许分割。事务的原子性确保动作要么全部完成,要么完全不起作用;
一致性(Consistency):执行事务前后,数据保持一致,例如转账业务中,无论事务是否成功,转账者和收款人的总额应该是不变的;
隔离性(Isolation):并发访问数据库时,一个用户的事务不被其他事务所干扰,各并发事务之间数据库是独立的;
持久性(Durability):一个事务被提交之后。它对数据库中数据的改变是持久的,即使数据库发生故障也不应该对其有任何影响。
只有保证了事务的持久性、原子性、隔离性之后,一致性才能得到保障。也就是说 A、I、D 是手段,C 是目的!
并发事务带来了哪些问题?
脏读(Dirty read)
一个事务读取数据并且对数据进行了修改,这个修改对其他事务来说是可见的,即使当前事务没有提交。这时另外一个事务读取了这个还未提交的数据,但第一个事务突然回滚,导致数据并没有被提交到数据库,那第二个事务读取到的就是脏数据,这也就是脏读的由来。
例如:事务 1 读取某表中的数据 A=20,事务 1 修改 A=A-1,事务 2 读取到 A = 19,事务 1 回滚导致对 A 的修改并未提交到数据库, A 的值还是 20。
丢失修改(Lost to modify)
在一个事务读取一个数据时,另外一个事务也访问了该数据,那么在第一个事务中修改了这个数据后,第二个事务也修改了这个数据。这样第一个事务内的修改结果就被丢失,因此称为丢失修改。
例如:事务 1 读取某表中的数据 A=20,事务 2 也读取 A=20,事务 1 先修改 A=A-1,事务 2 后来也修改 A=A-1,最终结果 A=19,事务 1 的修改被丢失。
不可重复读(Unrepeatable read)
指在一个事务内多次读同一数据。在这个事务还没有结束时,另一个事务也访问该数据。那么,在第一个事务中的两次读数据之间,由于第二个事务的修改导致第一个事务两次读取的数据可能不太一样。这就发生了在一个事务内两次读到的数据是不一样的情况,因此称为不可重复读。
例如:事务 1 读取某表中的数据 A=20,事务 2 也读取 A=20,事务 1 修改 A=A-1,事务 2 再次读取 A =19,此时读取的结果和第一次读取的结果不同。
幻读(Phantom read)
幻读与不可重复读类似。它发生在一个事务读取了几行数据,接着另一个并发事务插入了一些数据时。在随后的查询中,第一个事务就会发现多了一些原本不存在的记录,就好像发生了幻觉一样,所以称为幻读。
例如:事务 2 读取某个范围的数据,事务 1 在这个范围插入了新的数据,事务 2 再次读取这个范围的数据发现相比于第一次读取的结果多了新的数据。
不可重复读和幻读有什么区别?
不可重复读的重点是内容修改或者记录减少比如多次读取一条记录发现其中某些记录的值被修改;
幻读的重点在于记录新增比如多次执行同一条查询语句(DQL)时,发现查到的记录增加了。
幻读其实可以看作是不可重复读的一种特殊情况,单独把幻读区分出来的原因主要是解决幻读和不可重复读的方案不一样。
举个例子:执行 delete 和 update 操作的时候,可以直接对记录加锁,保证事务安全。而执行 insert 操作的时候,由于记录锁(Record Lock)只能锁住已经存在的记录,为了避免插入新记录,需要依赖间隙锁(Gap Lock)。也就是说执行 insert 操作的时候需要依赖 Next-Key Lock(Record Lock+Gap Lock) 进行加锁来保证不出现幻读
并发事务的控制方式有哪些?
MySQL 中并发事务的控制方式无非就两种:锁 和 MVCC。锁可以看作是悲观控制的模式,多版本并发控制(MVCC,Multiversion concurrency control)可以看作是乐观控制的模式。
锁 控制方式下会通过锁来显式控制共享资源而不是通过调度手段,MySQL 中主要是通过 读写锁 来实现并发控制。
共享锁(S 锁):又称读锁,事务在读取记录的时候获取共享锁,允许多个事务同时获取(锁兼容)。
排他锁(X 锁):又称写锁/独占锁,事务在修改记录的时候获取排他锁,不允许多个事务同时获取。如果一个记录已经被加了排他锁,那其他事务不能再对这条记录加任何类型的锁(锁不兼容)。
读写锁可以做到读读并行,但是无法做到写读、写写并行。另外,根据根据锁粒度的不同,又被分为 表级锁(table-level locking) 和 行级锁(row-level locking) 。InnoDB 不光支持表级锁,还支持行级锁,默认为行级锁。行级锁的粒度更小,仅对相关的记录上锁即可(对一行或者多行记录加锁),所以对于并发写入操作来说, InnoDB 的性能更高。不论是表级锁还是行级锁,都存在共享锁(Share Lock,S 锁)和排他锁(Exclusive Lock,X 锁)这两类。
MVCC 是多版本并发控制方法,即对一份数据会存储多个版本,通过事务的可见性来保证事务能看到自己应该看到的版本。通常会有一个全局的版本分配器来为每一行数据设置版本号,版本号是唯一的。
MVCC 在 MySQL 中实现所依赖的手段主要是: 隐藏字段、read view、undo log。
undo log : undo log 用于记录某行数据的多个版本的数据。
read view 和 隐藏字段 : 用来判断当前版本数据的可见性。
SQL 标准定义了哪些事务隔离级别?
SQL 标准定义了四种事务隔离级别,用来平衡事务的隔离性(Isolation)和并发性能。级别越高,数据一致性越好,但并发性能可能越低。这四个级别是:
READ-UNCOMMITTED(读取未提交) :最低的隔离级别,允许读取尚未提交的数据变更,可能会导致脏读、幻读或不可重复读。这种级别在实际应用中很少使用,因为它对数据一致性的保证太弱。
READ-COMMITTED(读取已提交) :允许读取并发事务已经提交的数据,可以阻止脏读,但是幻读或不可重复读仍有可能发生。这是大多数数据库(如 Oracle, SQL Server)的默认隔离级别。
REPEATABLE-READ(可重复读) :对同一字段的多次读取结果都是一致的,除非数据是被本身事务自己所修改,可以阻止脏读和不可重复读,但幻读仍有可能发生。MySQL InnoDB 存储引擎的默认隔离级别正是 REPEATABLE READ。并且,InnoDB 在此级别下通过 MVCC(多版本并发控制) 和 Next-Key Locks(间隙锁+行锁) 机制,在很大程度上解决了幻读问题。
SERIALIZABLE(可串行化) :最高的隔离级别,完全服从 ACID 的隔离级别。所有的事务依次逐个执行,这样事务之间就完全不可能产生干扰,也就是说,该级别可以防止脏读、不可重复读以及幻读。
MySQL 的默认隔离级别是什么?
MySQL InnoDB 存储引擎的默认隔离级别是 REPEATABLE READ(可重复读)
MySQL 的隔离级别是基于锁实现的吗?
MySQL 的隔离级别基于锁和 MVCC 机制共同实现的。
SERIALIZABLE(可串行化) 隔离级别是通过锁来实现的,READ-COMMITTED(读取已提交) 和 REPEATABLE-READ(可重复读) 隔离级别是基于 MVCC 实现的。不过, SERIALIZABLE(可串行化) 之外的其他隔离级别可能也需要用到锁机制,就比如 REPEATABLE-READ(可重复读) 在当前读情况下需要使用加锁读来保证不会出现幻读。
表级锁和行级锁了解吗?有什么区别?
MyISAM 仅仅支持表级锁(table-level locking),一锁就锁整张表,这在并发写的情况下性非常差。InnoDB 不光支持表级锁(table-level locking),还支持行级锁(row-level locking),默认为行级锁。
表级锁和行级锁对比:
表级锁: MySQL 中锁定粒度最大的一种锁(全局锁除外),是针对非索引字段加的锁,对当前操作的整张表加锁,实现简单,资源消耗也比较少,加锁快,不会出现死锁。不过,触发锁冲突的概率最高,高并发下效率极低。表级锁和存储引擎无关,MyISAM 和 InnoDB 引擎都支持表级锁。
行级锁: MySQL 中锁定粒度最小的一种锁,是 针对索引字段加的锁 ,只针对当前操作的行记录进行加锁。 行级锁能大大减少数据库操作的冲突。其加锁粒度最小,并发度高,但加锁的开销也最大,加锁慢,会出现死锁。行级锁和存储引擎有关,是在存储引擎层面实现的。
行级锁的使用有什么注意事项?
InnoDB 的行锁是针对索引字段加的锁,表级锁是针对非索引字段加的锁。当我们执行 UPDATE、DELETE 语句时,如果 WHERE条件中字段没有命中唯一索引或者索引失效的话,就会导致扫描全表对表中的所有行记录进行加锁。这个在我们日常工作开发中经常会遇到,一定要多多注意!!!
InnoDB 有哪几类行锁?
InnoDB 行锁是通过对索引数据页上的记录加锁实现的,MySQL InnoDB 支持三种行锁定方式:
记录锁(Record Lock):属于单个行记录上的锁。
间隙锁(Gap Lock):锁定一个范围,不包括记录本身。
临键锁(Next-Key Lock):Record Lock+Gap Lock,锁定一个范围,包含记录本身,主要目的是为了解决幻读问题(MySQL 事务部分提到过)。记录锁只能锁住已经存在的记录,为了避免插入新记录,需要依赖间隙锁。
在 InnoDB 默认的隔离级别 REPEATABLE-READ 下,行锁默认使用的是 Next-Key Lock。但是,如果操作的索引是唯一索引或主键,InnoDB 会对 Next-Key Lock 进行优化,将其降级为 Record Lock,即仅锁住索引本身,而不是范围。
共享锁和排他锁呢?
不论是表级锁还是行级锁,都存在共享锁(Share Lock,S 锁)和排他锁(Exclusive Lock,X 锁)这两类:
共享锁(S 锁):又称读锁,事务在读取记录的时候获取共享锁,允许多个事务同时获取(锁兼容)。
排他锁(X 锁):又称写锁/独占锁,事务在修改记录的时候获取排他锁,不允许多个事务同时获取。如果一个记录已经被加了排他锁,那其他事务不能再对这条事务加任何类型的锁(锁不兼容)
排他锁与任何的锁都不兼容,共享锁仅和共享锁兼容。
由于 MVCC 的存在,对于一般的 SELECT 语句,InnoDB 不会加任何锁。不过, 你可以通过以下语句显式加共享锁或排他锁。
# 共享锁 可以在 MySQL 5.7 和 MySQL 8.0 中使用
SELECT ... LOCK IN SHARE MODE;
# 共享锁 可以在 MySQL 8.0 中使用
SELECT ... FOR SHARE;
# 排他锁
SELECT ... FOR UPDATE;
意向锁有什么作用?
如果需要用到表锁的话,如何判断表中的记录没有行锁呢,一行一行遍历肯定是不行,性能太差。我们需要用到一个叫做意向锁的东东来快速判断是否可以对某个表使用表锁。
意向锁是表级锁,共有两种:
意向共享锁(Intention Shared Lock,IS 锁):事务有意向对表中的某些记录加共享锁(S 锁),加共享锁前必须先取得该表的 IS 锁。
意向排他锁(Intention Exclusive Lock,IX 锁):事务有意向对表中的某些记录加排他锁(X 锁),加排他锁之前必须先取得该表的 IX 锁。
意向锁是由数据引擎自己维护的,用户无法手动操作意向锁,在为数据行加共享/排他锁之前,InnoDB 会先获取该数据行所在在数据表的对应意向锁。
意向锁和共享锁和排它锁互斥(这里指的是表级别的共享锁和排他锁,意向锁不会与行级的共享锁和排他锁互斥)。
当前读和快照读有什么区别?
快照读(一致性非锁定读)就是单纯的 SELECT 语句,但不包括下面这两类 SELECT 语句:
SELECT ... FOR UPDATE
# 共享锁 可以在 MySQL 5.7 和 MySQL 8.0 中使用
SELECT ... LOCK IN SHARE MODE;
# 共享锁 可以在 MySQL 8.0 中使用
SELECT ... FOR SHARE;
快照即记录的历史版本,每行记录可能存在多个历史版本(多版本技术)。
快照读的情况下,如果读取的记录正在执行 UPDATE/DELETE 操作,读取操作不会因此去等待记录上 X 锁的释放,而是会去读取行的一个快照。
只有在事务隔离级别 RC(读取已提交) 和 RR(可重读)下,InnoDB 才会使用一致性非锁定读:
在 RC 级别下,对于快照数据,一致性非锁定读总是读取被锁定行的最新一份快照数据。
在 RR 级别下,对于快照数据,一致性非锁定读总是读取本事务开始时的行数据版本。
当前读 (一致性锁定读)就是给行记录加 X 锁或 S 锁。
当前读的一些常见 SQL 语句类型如下:
# 对读的记录加一个X锁
SELECT...FOR UPDATE
# 对读的记录加一个S锁
SELECT...LOCK IN SHARE MODE
# 对读的记录加一个S锁
SELECT...FOR SHARE
# 对修改的记录加一个X锁
INSERT...
UPDATE...
DELETE...
自增锁有了解吗?
关系型数据库设计表的时候,通常会有一列作为自增主键。InnoDB 中的自增主键会涉及一种比较特殊的表级锁— 自增锁(AUTO-INC Locks) 。
CREATE TABLE `sequence_id` (
`id` BIGINT(20) UNSIGNED NOT NULL AUTO_INCREMENT,
`stub` CHAR(10) NOT NULL DEFAULT '',
PRIMARY KEY (`id`),
UNIQUE KEY `stub` (`stub`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
更准确点来说,不仅仅是自增主键,AUTO_INCREMENT的列都会涉及到自增锁,毕竟非主键也可以设置自增长
如果一个事务正在插入数据到有自增列的表时,会先获取自增锁,拿不到就可能会被阻塞住。这里的阻塞行为只是自增锁行为的其中一种,可以理解为自增锁就是一个接口,其具体的实现有多种。具体的配置项为 innodb_autoinc_lock_mode (MySQL 5.1.22 引入),可以选择的值如下:
交错模式下,所有的“INSERT-LIKE”语句(所有的插入语句,包括:INSERT、REPLACE、INSERT…SELECT、REPLACE…SELECT、LOAD DATA等)都不使用表级锁,使用的是轻量级互斥锁实现,多条插入语句可以并发执行,速度更快,扩展性也更好。
不过,如果你的 MySQL 数据库有主从同步需求并且 Binlog 存储格式为 Statement 的话,不要将 InnoDB 自增锁模式设置为交叉模式,不然会有数据不一致性问题。这是因为并发情况下插入语句的执行顺序就无法得到保障。